SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2004; (in press) (DOI: 10.1002/spe.620)

Implementation of a
TMO-structured real-time
airplane-landing simulator on a
distributed computing
environment

R

Min-Gu Lee'!, Sunggu Lee'*T and K. H. (Kane) Kim?

)2 Department, POSTECH, San 31, Hyoja Dong, Pohang 790-784, South Korea
2Electrical and Computer Engineering Department, University of California, Irvine, CA 92697, U.S.A.

SUMMARY

In real-time simulation, the simulated system should display the same (or very close) timing behavior as
the target system. The simulation accuracy is increased as the simulation time unit is decreased. Although
there are several models for such systems, the TMO model is particularly appropriate due to its natural
support for real-time distributed object-oriented programming. This paper discusses the results of the
implementation of a real-time airplane-landing simulator on a distributed computing environment using
the TMO model. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: TMO; real time; distributed system; simulation; object-oriented programming

1. INTRODUCTION

The objective of computer simulation is to examine the behavior of a system by using a computer
program to model the target system, possibly because actual testing using the target system may be
dangerous, time-consuming, costly to implement, etc. A real-time system is a system in which there
are timing constraints, and the timeliness (meeting a deadline) of a computation is as important as
producing the correct computation result. Real-time simulation refers to computer simulation of a
system in which the simulated system displays the same (or very close) timing behavior as the original
system [1].

*Correspondence to: Sunggu Lee, EE Department, POSTECH, San 31, Hyoja Dong, Pohang 790-784, South Korea.
TE-mail: slee@postech.ac.kr

Contract/grant sponsor: The Korean Ministry of Information & Communication through its University Fundamental Research
Program; contract/grant number: 2001-051-3
Contract/grant sponsor: NSF; contract/grant numbers: 00-86147 and 02-04050

Received 22 August 2002
Copyright © 2004 John Wiley & Sons, Ltd. Revised 5 April 2004
Accepted 5 April 2004

M.-G. LEE, S. LEE AND K. H. KIM

Real-time simulation can be divided into two categories: scaled and non-scaled real-time simulation.
Scaled real-time simulation is a simulation method in which the target system is modeled in a time-
accurate manner, but its time base is scaled (to longer or shorter time units) in order to achieve a faster
simulation response or a more accurate analysis. Implementation of a global climate simulation system,
which simulates the earth’s climate changes over a period of several decades or centuries in order to
learn about global warming and other global climate phenomena, is a good example of a scaled real-
time simulation. For obvious practical reasons, the simulation should be performed using a scaled time
base. It may also be desirable to increase or decrease the time base as the simulation progresses in
order to view some sequences of climate changes in more detail. In a non-scaled simulation system,
the simulation should progress at the same rate or speed as the target system. Non-scaled real-time sim-
ulation is particularly appropriate for real-time applications in which there is human interaction, such
as in a real-time traffic control system or a pilot training simulator system. A pilot training simulator
should be built as a real-time system with external input events such as the pilot’s commands to control
the airplane. A pilot who controls the airplane in the simulation system must feel that it has the same
timing behavior as a real airplane. In performing non-scaled real-time simulation, it is very important
to not only enhance the computation speed as much as possible, but also to execute the specified task
(real-time task) with a predictable delay. That is, the deviation of the actual execution start time of the
real-time task from its specified execution start time must be kept small regardless of the other system
and application processes being executed by the computer system performing the simulation.

Commercial simulation tools typically do not have enough functionality to support the efficient
development of real-time simulation systems. Some tools also do not provide effective support for
simulation using distributed systems. To increase the accuracy of real-time simulation, an accurate
modeling method (possibly involving long computations) is required and the simulation time unit
should be decreased as much as possible. Due to the increased computational capability required
by such an approach, many real-time simulation tasks will require the use of parallel or distributed
systems. Distributed simulation using the object-oriented programming methodology would also be
desirable in order to facilitate the programming task [2—-5].

The TMO (Time-triggered Message-triggered Object) model [6—8] provides natural support for real-
time distributed object-oriented programming. This paper discusses the implementation of a real-time
simulation task, specifically an airplane-landing simulation, using the TMO model. On the basis of this
implementation study and other independent measurements, the TMO model is evaluated with regards
to its distributed computing and real-time support in addition to its ease of programming. The rest
of this paper is organized as follows. A brief overview of the TMO model is presented in Section 2.
Then the real-time support provided by the current TMO implementation is evaluated in Section 3.
Sections 4 and 5 discuss our implementation of the airplane-landing simulator using TMOs.
Section 6 discusses performance issues for TMO applications, and conclusions are presented in
Section 7.

2. OVERVIEW OF THE TMO MODEL
2.1. TMO model

The TMO model, previously referred to as the RTO.k model [1,9], was introduced and developed
by Kane Kim and his collaborators. This model supports real-time object-oriented programming

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
&

efficiently due to its syntactic structure and execution semantics. For a detailed description of the TMO
model, the interested reader is referred to [6—8]. In the following, a brief overview of the TMO model
is presented in order to aid in understanding the rest of the paper. The main features of the TMO model
are summarized below.

ey

@)

3)

“)

Distributed computing object model: the TMO model supports a distributed computing
environment. TMOs can be distributed among multiple nodes. TMOs can communicate with
each other using remote method calls, which are also referred to as service requests. To increase
concurrency, client TMOs can make non-blocking requests to server TMOs. TMOs can also
communicate with each other using logical multicast channels.

Separation of two types of methods: the TMO makes a clear separation between SpMs
(spontaneous methods) and SvMs (service methods). An SpM is a method which is triggered
by the global time base, which is represented by the internal real-time clock; it is also called a
time-triggered method. On the other hand, an SvM is a method which is triggered by the external
service request of another TMO. Since this external service request occurs through a message,
an SvM is a message-triggered method.

Basic concurrency constraints (BCCs): this is a rule devised for preventing potential conflicts
between SpMs and SvMs. If SpMs and SvMs attempt to access the same data groups in the ODS
(Object Data Store), SvMs are delayed from executing until there is no longer a conflict. That is,
SvMs can be run only when their executions will not disturb the execution of any SpMs through
data access conflicts.

Guaranteed completion time for method execution and deadline for result arrival: for output
actions and method completions of a TMO, the designer guarantees and advertises execution
time windows bounded by start times and completion times. Deadlines are also specified in the
client’s call for service methods for the return of the service results.

The structure of a TMO in the TMO model is shown in Figure 1. A TMO contains its name, an

ODS,

SpMs, SvMs, AAC and EAC (Environment Access Capability). The role of each component is

described below.

ey

@)

ODS: used for storage of properties and states of the TMO such as a simple variable or a complex
class object. For example, in our simulator, as will be shown later, an airplane simulator object
stores in this location information regarding its state and properties such as position, velocity,
etc. Data members in the ODS are grouped into harmoniously sharable data store units called
object data store segments (ODSSs) in a TMO. Each ODSS is thus a group of data members and
is a unit that can be locked for exclusive use by one method execution at a time as well as for
shared use by multiple concurrent method executions which perform read-only operations on the
data members contained.

SpM: a time-triggered method, which may be executed in a complex periodic manner. An SpM
may represent a real-time periodic task. A part of the SpM is the autonomous activation condition
(AAC), which defines the time windows for the execution of that SpM, the completion deadline,
and the iteration period. The application level scheduler examines the AAC section to select
the next running thread (a detailed description of scheduling is covered in Section 2.2). In the
airplane simulator the state of an airplane, such as position, velocity, etc., must be updated during
each period. A TMO can have multiple SpMs, and each one can have its own period.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM SRE

Name of TMO

Execution Facility
Deslred

Capabilities for accessing

oDsSS oDSs EACé 1d

(- - % 4 » other TMO's and network
e environmentincl . logical

multicast channels, and
N\ I/O devices

Object Data Store (ODS)

.. P
1:---: SpM 1 h?."&;'ﬂ
Time-triggered (TT) Processio
| EEmEsEa = > Spontaneous Methods
" !_. _AAD—> SpM 2 (SpM's) Mefhod
... ’ e i ol
Resejvation Q% "Absolute time .
Deadi domain" .
Service Request]_From SvM's, SpM's cacines £y Y
Queues N
— Tp——— Mx”/ -
Client Message-triggered LFma.
TMO's Service Methods
” — SvM's
: concurrency . "Relative time -
—_— Y n
control domain =

Figure 1. Structure of a TMO (adapted from [10]).

(3) SvM: a message-triggered method, which responds to external service requests. In the airplane
simulator, an airplane TMO needs to make a request for an available runway to the control tower
TMO. Then, when an appropriate runway is found by the control tower object, it responds to the
airplane object by using another SvM.

(4) EAC: list of gates (access points) to remote object methods, logical multicast channels, etc., as
shown in Figure 1. These gates provide efficient call paths to remote object methods, logical
communication channels, and I/O interfaces.

For example, to see how an actual system can be modeled using TMOs, let us consider the modeling
of an airplane-landing simulator. There should be a user-controllable airplane object—referred to as
MyAirPlane TMO—and other environmental objects such as other airplanes, a control tower, hangars,
etc. Naturally, MyAirPlane object needs to periodically update its state and process user input in a real-
time manner. But these are independent tasks. Therefore, MyAirPlane object has two periodic tasks to
be performed. There are two SpMs in MyAirPlane TMO, as shown in Table I. In addition, there should
be data segments which store states, properties, and control events for MyAirPlane object. Furthermore,
MyAirPlane object should communicate with ControlTower object and Space object, which represents
the three-dimensional environmental space and detects any collision occurrences. There are two SvMs.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
&

Table I. TMO model of MyAirPlane object.

Access capability: Space, Control Tower

ODS

—UserControl // flaps, rudder, landing gears, spoilers, etc.

—Properties // mileage, weight, max speed, lower bound speed to fly, etc.

—States // velocity, position, remaining fuel, views, flight distance, alarm balances, etc.

—Copy-Weather_From_Space

SpMs
—Update States

/I Update velocity, position, current weight, remaining fuel, balances, etc.
—Processing User Control

/I Update flaps, rudder, landing gear, request landing runway to Control Tower, etc.

SvMs
—ReceiveFromSpace

/I Get Weather Info. from Space.
—ReceiveFromControl Tower

/I Get result of requesting for landing, alarm messages, etc.

The AAC is not shown in Table I, but each SpM has its own AAC section—the AAC section contains
the period, deadline, and other real-time constraints for an SpM.

2.2. TMO middleware

To support the TMO model, the DREAM Laboratory at UCI (University of California, Irvine)
developed the middleware named TMOSM (TMO support middleware) and the API wrapping the
services of TMOSM named TMOSL (TMO support library) [10]. TMOSM is a middleware model used
to support execution of TMO-structured applications on commercial, off-the-shelf operating systems;
the implementation used in the research reported here runs on a Microsoft Windows NT environment
and is referred to as TMOSM/NT. There are versions running on other OS platforms also (WinCE,
Linux, etc.). TMOSL is a user-level API used to support programming in the TMO model. TMOSL
basically consists of a set of C++ classes that can be inherited.

The internal structure of TMOSM/NT is shown in Figure 2. TMOSM/NT has three types of threads:
middleware threads, application threads, and a super-micro thread. Application threads consist of
threads that execute SpMs and SvMs of application TMOs, and the super-micro thread is the WTST
(Watchdog Timer and Scheduler Thread), which runs at the highest priority in order to schedule all
other threads on the node. As can be seen in Figure 2, the WTST is invoked by timer interrupt.
The current version of TMOSM/NT sets the period of the watchdog timer at 3 ms. At the start of
each period (i.e. every 3 ms), the WTST is invoked by a watchdog timer interrupt, at which time
it manages scheduling/activation of any other threads in TMOSM. It also checks if there are any

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM SRE

ITMO _1TMO L TMO o ﬁﬁggggtion
ication & <O <
Application [&=5 = see — Middleware
- H thread

Interval Timer

/_ — Message processes

Communication Network]

RT Clock and @ == =» Activate thread other

Figure 2. Internal structure of TMOSM (adapted from [11]).

deadline violations. If any violation is found, it signals this to the user. Also, as will be elaborated
on in Section 3.3, the WTST is responsible for maintaining the global system clock.

The middleware threads are periodic threads, each responsible for a major portion of the functions
of the TMOSM. The middleware threads consist of the following three main threads.

(1) MMCT (Middleware Message Communication Thread): this thread manages the sending of
middleware messages through the communication network. Middleware messages are the
messages exchanged among the middleware instantiations running on different nodes to support
interactions among TMOs.

(2) VMST (Virtual Main System Thread): this thread allocates CPU time slices to application
threads such as SpMs and SvMs. When the VMST gets a CPU time slice, the application thread
scheduler is called and one of the available SpMs or SvMs is selected to run.

(3) VIST (Virtual I/O System Thread): this virtual thread maintains the pool of local I/O interface
threads (LIIT in Figure 2) and executes the I/O requests from application threads. The time slices
allocated to VIST are distributed to LIITs. The LIIT performs disk I/O and network I/O involving
messages which are not middleware messages.

Communication messages which are generated directly by TMO methods are sent usually by use of
LIITs. In a real-time application, the timing behavior of application threads should be predictable to a
great extent. By partitioning the time domain into a part used by the computation segments involving
CPU(s) and memory only, i.e. the part used by VMST, and a part used by the computation segments

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

SP E A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
%

MMCT | VMST | VIST | MMCT | VMST | VIST

% J \m each time-slice given to

Y VMST, the application
One TMOSM cycle thread scheduler is called
to select an appropriate
application thread

Figure 3. Two-level scheduling scheme (adapted from [10]).

involving I/O devices, i.e. the part used by VIST, control and analysis of the timing behavior of TMO
method execution become easier. In particular, the analysis of the timing behavior of the application
threads becomes much easier. For example, TMO supports a TMOSLprint() API, handled by the VIST,
for printing messages to the console—this is similar to the printf() function in the C programming
language.

TMOSM uses two-level scheduling. Figure 3 shows a two-level scheduling cycle. Middleware
threads are scheduled by the WTST (i.e. middleware-level scheduler) and application threads are
scheduled when time slices are given to them by the VMST. The VMST selects an application
thread (SpM or SvM), and permits it to run its task. Therefore, the VMST is a second-level
scheduler (i.e. application-level scheduler). The middleware scheduler uses the round-robin scheduling.
The VMST runs every 9 ms, at which time it can select and invoke a user application thread.

The VMST selects an SpM or SvM from a Ready-Application-Thread-Queue using an earliest
deadline first algorithm. There are two more application queues which contain SpMs (i.e. SpM-
Reservation-Queue) and SvMs (i.e. Waiting-SvM-Thread-Queue). SpMs in the SpM-Reservation-
Queue are examined periodically by the WTST and moved into the Ready-Application-Thread-Queue
at appropriate times. In contrast, when receiving service request messages, the MMCT (Middleware
Message Communication Thread) identifies the requested SvM and then inserts it into the Waiting-
SvM-Thread-Queue. If the SvM invocation passes the BCC (see Section 2.1) check, it is moved to
the Ready-Application-Thread-Queue. Therefore, an SpM is triggered by the WTST (which is in turn
triggered by a real-time interrupt), and an SvM is triggered by an incoming message.

3. TIMING PERFORMANCE OF THE CURRENT TMO IMPLEMENTATION

Before using the TMO model to create our airplane-landing simulator, the performance of the current
TMO implementation was tested to ensure that it would satisfy our needs. All experiments were
performed on a cluster of Intel Pentium III 933 MHz dual-CPU server PCs with 256 MB of main
memory each and a 100 Mbps fast Ethernet network connection. During our experiments, there was no
other user-level system load or any other network load. The operating environment used in the cluster
was Microsoft Windows 2000 professional with TMOSL and TMOSM/NT.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM

Table II. Maximum number of schedulable SpMs in a node.

Period (ms) 16 30 50 75 100 125
Number of SpMs 2 4 5 9 9 13

3.1. Maximum number of schedulable SpMs in a node

At the initial phase of this investigation, we thought that it would be useful to find out how many
SpMs could run on a node. To test this boundary, we increased the number of SpMs which run on a
node until TMOSM/NT was unable to schedule SpMs properly. The results are shown in Table II.
The minimum period that TMOSM/NT could support in the node machine configuration adopted
turned out to be about 16 ms. TMOSM/NT uses the time slice of 3 ms and the VMST runs every
9 ms under the two-level scheduling scheme adopted. An SpM can run only when the VMST gets a
time slice. With a more powerful node and network configuration which allows smaller time slices, the
minimum period that can be supported becomes smaller. Therefore, Table II starts at 16 ms. The table
shows that the maximum number of SpMs supported is closely related to the SpM period. As this period
is increased, the number of schedulable SpMs is also increased. To reduce the overhead of scheduling,
the current implementation of TMOSM examines a 200 ms time window in advance to fill up the
SpM-Reservation-Queue (refer to Section 2.2), and the maximum number of items is 30. Therefore, the
number of simultaneously executable SpMs is limited by the queue size and time window. The notation
“*N/A (not available)’ in Tables III and IV shown in the next section indicates a situation in which the
system could not execute because there were too many SpMs for that time period.

3.2. Timing performance of SpMs within a single node

SpMs are often specifications of periodic real-time computations in the TMO model. In executing each
iteration of an SpM, it is desirable to keep the difference between the actual and desired execution
start time to a minimum. The desired execution start time is the earliest possible execution time in that
period. As stated in Section 2.2, TMOSM uses an earliest-deadline-first algorithm to select the next
running SpM (i.e. it is a user-level scheduling algorithm). Therefore, it is desirable for a periodic real-
time task to run at the beginning of its period. Experiments were performed by using simple SpMs,
which just read the elapsed time from the beginning of the TMO application till the printing to the
console.

Table III shows the experiment results that involved one TMO with several SpMs on a single
node. It shows the minimum, maximum, average, and standard deviation of the difference between
the actual execution start times and the desired execution start times of a single SpM. This result
was obtained during 10000 iterations on a single node. The first column, labeled period, refers to
the period of the SpM, i.e. the time interval between consecutive iterations of that SpM. Within a
single node, time differences were measured by using the Pentium timer, resulting in highly accurate

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
&

Table III. Difference between actual and desired execution start times of SpMs in a node
(in us).

Period Number of SpMs Minimum Maximum Average Standard deviation

16000 1 33 11747 5859 3385
2 39 11821 5895 3383

3 *N/A *N/A *N/A *N/A

4 “N/A “N/A “N/A “N/A

30000 1 33 11744 5845 3391
2 38 13118 5830 3390

3 43 12078 5966 3391

4 50 12053 5983 3383

50000 1 110 11744 5801 3403
2 42 11878 5795 3404

3 61 11799 5868 3314

4 54 11935 5778 3366

75000 1 36 11757 5771 3384
2 4 11825 5866 3333

3 46 11870 6189 3374

4 51 11936 5995 3394

100000 1 39 11762 5522 3360
2 43 11831 5487 3343

3 52 11901 5679 3401

4 53 11975 5612 3355

timing measurements. ‘*N/A’ in the table represents a case where experiments were not possible, as
already explained in Section 3.1.

Table III shows that the average difference is about 5.5 ms, and as expected, there is no relation
between the period of an SpM and the observed difference in execution start times. If a TMOSM
implementation is perfect, then the difference should be zero. An increase in this difference means that
the beginning of an SpM execution is delayed, thus lowering the timing precision of real-time tasks.
Therefore, the average values should be small. For an application which has a period of at least a few
tens of milliseconds, a difference of a few milliseconds does not cause any problems, since a real-time
periodic task simply needs to be run once during each iteration period. As mentioned earlier, the VMST
runs every 9 ms. This factor clearly has major impacts on the average difference between the actual
and the desired execution start times.

Table III shows that the minimum difference value is about 40 us, the variance is about 3.3 ms, the
average is about 5.5 ms, and the maximum value is about 12 ms. The differences are unpredictable but
bounded below 13 ms in all cases. This implies that the current TMOSM implementation is not suitable

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM

Table IV. Differences in execution start times of SpMs distributed among multiple TMOs
in a node (in us).

Period Number of TMOs Minimum Maximum Average Standard deviation

16 000 1 33 11747 5859 3385
2 43 12113 5914 3387

3 *N/A *N/A *N/A *N/A

4 *N/A *N/A *N/A *N/A

30000 1 33 11744 5845 3391
2 4 13156 5945 3385

3 45 13229 5947 3387

4 50 11934 5888 3387

50000 1 110 11744 5801 3403
2 43 11809 5770 3370

3 46 11862 5820 3368

4 54 11955 5793 3369

75000 1 36 11757 5771 3384
2 40 11823 5358 3367

3 47 11884 5889 3331

4 50 11918 6286 3372

100000 1 39 11762 5522 3360
2 49 11811 5551 3331

3 48 11888 5645 3394

4 56 11946 5636 3370

for applications with a very low simulation time unit (with a resolution less than 10 ms) because a
real-time task may not always begin its execution before its extremely short deadline expires. However,
since the maximum difference value still remains under 13 ms, the current TMOSM implementation is
suitable for applications with a required time resolution of at least a few tens of millisecond (which is
the case with our airplane-landing simulator).

Table IV shows the results of using multiple TMOs, with a single identical SpM in each TMO, on a
single node. As expected, the results are only dependent on the number of SpMs in an application, and
not on the number of TMOs. These results show that the difference between the execution start times
of identical SpMs in different TMOs is as expected.

To check the performance trend of the current TMOSM implementation, the number of SpMs
executed on a single node was increased and the resulting differences in execution start times measured.
These results are shown in Figure 4. The measured values are shown with a solid curve, and the
asymptotes of the measured values are shown with a dashed curve. As can be seen, the execution
start time differences increase only slightly with increasing numbers of SpMs up to 13 SpMs.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

SP E A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
%

8.0
Measured
= = «Asymptote

15
o
E
@
Q
C
2
g 7.0
=
@
o
el
T
>
<65

6.0 . .

1 2] 4 5 6 T 8 9 10 n 12 13
SpMs

Figure 4. Differences in execution start times of SpMs assigned to a single node.

3.3. Inter-node timing differences

The TMO model provides support for a distributed computing environment; that is, TMOs can be
distributed among multiple nodes. Thus, any timing differences among the different nodes in execution
become an important issue. Based on the global clock maintained by the TMOSM, objects in different
nodes should exhibit the same relative timing behavior as when those objects are located on the
same node. To check the accuracy of this assumption, the difference in execution start times between
identical TMOs assigned to multiple nodes was measured. The results are shown in Figure 5 in detail
and in Figure 6 in a summarized form.

TMOSM incorporates a global clock synchronization scheme in order to efficiently support TMOs
distributed across multiple nodes. Every node has its own system clock, typically based on a crystal
oscillator. However, crystal oscillators have a tendency to drift slightly, and no two oscillators are
perfectly synchronized. Thus, even if all nodes are initially synchronized, the system clocks of different
nodes can become unsynchronized after a period of time.

TMOSM deals with this problem using a periodic re-synchronization scheme. After every second,
the WTST in the master node sends a broadcast message to worker nodes requesting clock
synchronization. Then, worker nodes which receive this message calculate clock differences, taking
into consideration the communication delay (measured during the initialization stage), and update
their own clocks. As stated in [11], the maximum difference between the master node and worker
nodes in the current TMOSM implementation is bounded by about 250 us. Thus, the global clock can
be considered to be accurate to within about 500 us. With a more powerful network configuration in
terms of delay and jitters, a global time base of a higher precision can be established.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM SRE

15.0

- aEna RNl [T

Wil
NI

5.0

Difference (ms)
o
o

-5.0

-10.0

-15.0
0 1000 2000 3000 4000 5000 8000 7000 8000 9000 10000

Time Step

Figure 5. Differences in execution start times of two SpMs assigned to two different nodes.

The difference in execution start times between two identical TMOs assigned to two nodes is shown
in Figure 5. The horizontal axis corresponds to the simulation time step, and the vertical axis is the
difference in execution start times between the two nodes in microseconds. The graph shows the results
of 10000 iterations of an SpM with a 16 ms period. The result does not depend on its period, i.e. a graph
for a different period shows similar timing behavior. The average difference observed during the two-
node experiment is about 3.5 ms and the standard deviation is about 2.8 ms. The maximum difference
is bounded within about 13 ms. The result shows that the timing precision of SpMs distributed among
multiple nodes is in an acceptable range when the iteration period of every SpM in the target application
is much larger than 13 ms.

Figure 6 shows the average differences in execution start times of SpMs distributed among multiple
nodes. Ideally, this value should be zero. With increasing numbers of nodes, the actual value was found
to increase and then reach a plateau at around 7.1 ms. In all cases, the maximum difference values
were found to be around 12 ms. Thus, the current TMOSM implementation should be scalable to
medium-sized clusters as long as timing accuracies of a few tens of milliseconds are sufficient.

If the number of nodes grows much beyond a dozen, the average differences in execution start
times of SpMs will not be affected much unless the precision of the global time base realized through
synchronization of distributed clocks deteriorates significantly. During clock synchronization, the
system normally operates with minimal message traffic. A more serious performance degradation will

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

SP E A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
%

8

7 o ——t——————e

70 gg O 70 70 T 7171
6.6
6 653
6.1
I

5
B
= 46
g4 / :
@
g
= 35

2

1

0 ; ; :

0 2 4 6 8 10 12 14 16
nodes

Figure 6. Average differences in execution start times of SpMs distributed among multiple nodes.

show up in the form of increased average latency in message communication among the nodes and
increased overheads in executing remote SvM calls.

4. APPLYING THE TMO MODEL

4.1. The target application

In this work, we implemented an airplane-landing simulator to investigate how the TMO model can be
applied to a real application in a distributed computing environment. As mentioned above, the airplane-
landing simulator is representative of applications that require non-scaled real-time computations.

4.2. TMO modeling of the target system

Figure 7 shows a model of the target system. First of all, we defined a three-dimensional space,
which provides the environment for the actual simulation. There must be an airplane, referred to as
MyAirPlane, which is controlled by the user, performing the role of the pilot. Also, there may be other

airplanes, referred to as TheOtherAirPlanes, in our simulation space. Finally, there need to be hangars,
runways, and a control tower.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM SRE

1 <
z *(TheOtherAirPfane3
b '

' TheOtherAirPlane?2

o &

! TheOtherAirPlanel NlyAirPlane

‘ Y
S I

Garage TheOtherAirPlane4

ControlTower

Figure 7. Simulation environment of the airplane-landing simulator.

A top-down methodology was used to develop the TMO model for our simulation. First, we modeled
the entire system using one TMO. Then, we extracted one object from this original model and created
a separate TMO for it. This process was repeated until sufficiently detailed logic was incorporated and
the TMO network appeared to be sufficiently modularized for our application. The resulting system
consists of the four TMOs described below.

ey

@)

3

MyAirPlaneTMO: an airplane TMO which is controlled by the user. This object has three types
of information: (1) the state of the airplane such as velocity, position, etc.; (2) the properties of the
airplane such as size, maximum speed, etc.; (3) user controls such as rudder, flaps, spoilers, etc.
Also, this object must communicate with the control tower, referred to as ControlTowerTMO.
There must also be mechanisms for requesting the runways, receiving alarm messages (about to
crash with another airplane, etc.), getting weather information, etc.

SpaceTMO: this object represents the three-dimensional space, which provides the environment
for our simulation. This model has all the information of the environment pertaining to the
simulation. Also, this object has information on TheOtherAirPlanes, and an SpM of this object
updates the state of TheOtherAirPlanes. MyAirPlaneTMO periodically informs SpaceTMO of
its position so that the latter may detect occurrences of collisions between MyAirPlane and other
airplanes.

ControlTowerTMO: this TMO represents the control tower. This object monitors and regulates
the flight, landing, and take-off of all airplanes in the simulated space. This TMO always checks

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
&

Space MyAirPlane
Access Capability : ExternalSpace, MyAirPlane, Access Capability : ControlTower, Space
ControlTower oDS
OoDS - UserControl
- Signature_ MyAirPlane - Properties
- (0 — N) TheOtherAirPlanes - States
- (0 — M) Runways - Weather
- Hangar SpMs
- Weather_and_Others - UpdateStates
SpMs - ProcessingUserControl
- UpdateWeather_and_Others SvMs
- UpdateHangar — » - ReceiveFromSpace
- UpdateRunways - ReceiveFromControlTower
- UpdateTheOtherAirPlanes
SvMs
- ReceiveFromExternalSpace ControlTower
- ReceiveFromMyAirPlane Access Capability : MyAirPlane, Space
OoDS
ExternalSpace - Properties
- ControlSystem
Access Capability : Space SpMs
oDS - UpdateControlSystem
- NewAirPlane SvMs
- ReceivedAirPlane - ReceiveFromMyAirPlane
SpMs - ReceiveFromSpace
- UpdateNewAirPlane —
SvMs
- ReceiveFromSpace <

Figure 8. The relation among the TMOs in our simulator.

the space, and sends an alarm to MyAirPlaneTMO when the probability of a crash is increased
beyond a certain threshold. It also processes requests from all airplanes such as landing-runway
requests, etc.

(4) ExternalSpaceTMO: this TMO models the creation and termination of TheOtherAirPlanes in our
simulation space. Although airplanes are not actually created and destroyed, such actions model
what happens when airplanes enter or leave the three-dimensional simulated space.

Figure 8 shows the relation among the TMOs in our model. Each TMO contains its name, the
access capabilities of the TMO, the object data store (ODS), spontaneous methods (SpMs), and service
methods (SvMs). The ODS contains a list of the data objects to be maintained by that TMO. The SpM
and SvM fields show a list of the spontaneous (real-time-clock-triggered) and service methods (called
by client objects), appropriately named so that the function of each method is self-evident. The arrows
in the figure show the direction of messages in the model.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM IEIEJEI

class MyAirPlaneTMO_ODSS : public ODSSBaseClass

private :
int m_fuel;
struct cartesian_vector m_vel;

struct cartesian vector m_pos;

struct flaps m_flaps;

struct spoilers m_spoilers;

struct size m_size;

int m_rudder, m_landinggear, m_mileage;
int m_weight, m maxspeed;

struct balances m_balance;

struct engineThrotle m_enginethrotle;
struct weather m_weather;

void setDefault () ;

int m_AlarmReceived;

Figure 9. A part of ODS of MyAirPlaneTMO.

5. IMPLEMENTATION
5.1. Implementation of an airplane-landing simulator

It is much easier to implement a sizable real-time distributed computing application by using the TMO
programming scheme than by using conventional lower-level programming schemes. TMOSL, the
TMO support library, contains a set of base classes that can be inherited for the creation of object data
stores (ODSs), SpMs, SvMs and TMO frames. As an example, Figure 9 shows a part of the ODS for
MyAirPlaneTMO. This ODS contains the variable m_pos, used to represent the position of MyAirPlane
in the three-dimensional simulated space, m_vel, used to represent its velocity, and other variables used
to represent the current state of MyAirPlaneTMO. The variables in an ODS are accessed and updated
by SpMs or SvMs in the TMO of which the ODS is a part.

Figure 10 shows the class definition for an SpM that is a member of MyAirPlaneTMO. This SpM is
named MyAirPlaneTMO_UpdateState_SpM, and it runs in a periodic manner. Naturally, a model of a
real system can contain several SpMs, with each SpM possibly having its own period. However, better
execution performance can be realized if all SpMs for a particular TMO are merged into a single SpM
in the case where each node is a single-CPU machine. The model of the airplane-landing simulator
also originally had several SpMs in each TMO. However, for performance reasons, all SpMs in a
given TMO application were merged into one since the nodes in our initial experimental network
configuration were to be single-CPU machines. The function of a particular SpM can be inferred
from its name and its description in the design chart. SpMs are used to update the state of each
airplane, process user inputs, send messages to other TMOs, etc. To communicate with other TMOs,
SpMs use gate objects. Thus, for example, MyAirPlaneTMO_UpdateState_SpM uses one gate object
to communicate with SpaceTMO and another gate object to communicate with ControlTowerTMO.
Although not shown here, the gate object for the ReceiveFromMyAirplane in SpaceTMO is declared
in one statement which is an instantiation of the standard TMO Gate Class, with the names of the TMO
(SpaceTMO) and the SvM (ReceiveFromMyAirplane) as parameters.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

E A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
%

class MyAirPlaneTMO UpdateState SpM : public SpMBaseClass

private
MyAirPlaneTMO_ODSS * m_MyAirPlaneTMO_ ODSS;
TMOGateClass *

m_gate MyAirPlaneTMO_UpdateState SpM to_ SpaceTMO ReceiveFromMyAirPlane SvM;
TMOGateClass *
m_gate MyAirPlaneTMO_UpdateState SpM to ControlTowerTMO_ReceiveFromMyAirPlane SvM;
struct ParamStruct_ FromMyAirPlane to_ Space mp_toSpace;
struct ParamStruct_ FromMyAirPlane to_ ControlTower mp_toControlTower;
public
MyAirPlaneTMO UpdateState SpM(const char * SpM name, TMOGateClass &gatel,
TMOGateClass &gate2, MyAirPlaneTMO ODSS & odss, access_mode_type mode) ;
“MyAirPlaneTMO_UpdateState_ SpM() ;
virtual void SpMBody () ;

Figure 10. Definition of SpM of MyAirPlaneTMO.

class MyAirPlaneTMO : public TMOBaseClass

private
MyAirPlaneTMO_ODSS m_MyAirPlaneTMO_ODSS;
MyAirPlaneTMO UpdateState SpM
m_MyAirPlaneTMO UpdateState_SpM;
MyAirPlaneTMO_ReceiveFromSpace_SvM
m_MyAirPlaneTMO_ReceiveFromSpace_SvM;
MyAirPlaneTMO_ReceiveFromControlTower_ SvM
m_MyAirPlaneTMO_ReceiveFromControlTower SvM;
public
MyAirPlaneTMO (const char * TMO_name, TMOGateClass &,
TMOGateClass &, tms & TMO_start_ time);

}i

Figure 11. Definition of MyAirPlaneTMO class.

Figure 11 shows the definition of MyAirPlaneTMO. This class has the single SpM corresponding
to the two SpMs shown in Figure 8 and two SvMs that have remained intact. The function of each of
the SpMs and SvMs can be inferred from its name. MyAirPlaneTMO_ODSS is the ODSS class for
MyAirPlaneTMO and MyAirPlaneTMO_UpdateState_SpM is the periodic method described above.
MyAirPlaneTMO_ProcessingUserControl_SpM is an SpM that processes the key inputs from users.
Other ODSs, SpMs, SvMs, and TMO frames are implemented similarly.

5.2. User input/output interface

The user input/output interface consists of a keyboard input interface and a graphic output interface.
This graphic user interface is implemented as a separate non-TMO process by using the Microsoft MFC
library. The graphic user interface communicates with TMOs by using the UDP. Graphical processing

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM

. HISE8!S - flsGraphic o =101

DeE 50|83

-y 1241 [14525 J2055 |
NN K EZE

H (1497 Q8464 Q3174 |
69 J-614 J-308 |

ENN C S
o Jo___Jo |

HEEE
665

ENEN EHN CEEN
o ___Jo___Jo |

EN C S
o Jo___Jo__]

N EIEN I S
o ___Jo___Jo |

1§ B |
o __Jo___Jo]

[Position -X Y {Z | [Velocity-X¢Y12Z | [Flaps-FRIFL{RRJRL | [Throtle L{R] [Rudder] [spoilerL{R]
(37260] [soo0 J[1e1z] 204 J[o J[zn] o Jo Jo Jo] [0 J][0] o J[o]

ZHl I |NUM 7

Figure 12. Screenshot of the user interface program.

functions can consume a lot of CPU processing power. Thus, for performance reasons, the graphical
interface for a TMO application is typically executed on a processing node different from the node that
executes the TMO. Figure 12 shows the graphic user interface for the airplane-landing simulator.

5.3. Implementation on a distributed computing environment

In order to adapt an application configured on a single-node system to a multi-node system
configuration, the application developer can distribute the TMOs to the desired number of nodes in
fairly simple manners. The TMO support middleware provides support for communication between
TMOs located on different nodes (or on the same node) in a manner to the application programmer
transparent. Although a TMO can technically be split across multiple nodes, the current implementation

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
&

Table V. Differences between actual and desired execution start times (in us) for an SpM
in the airplane-landing simulator.

Number of nodes Minimum Maximum Average Standard deviation
4 40 14091 5870 3381

permits this type of split only on a machine supporting shared memory. In distributed computing
environments where there are more processing nodes than TMOs, the application designer can check
if it is worth splitting each of these TMOs with heavy computational requirements into a number of
smaller TMOs.

The current version of the airplane-landing simulator has four TMOs. Thus, it can be executed on
a cluster of one to four nodes (not counting the node executing the graphic user interface). If it is
determined that a larger cluster must be used (in order to provide better performance), then four TMOs
need to be restructured into a larger number of TMOs. For instance, in order to exploit parallelism
within SpaceTMO, it can be divided into several TMOs, each covering a separate non-overlapping
portion of the three-dimensional simulated space. Splitting the simulated space into several TMOs is a
frequently used method for distributing work to multiple nodes.

6. PERFORMANCE OF THE TMO APPLICATION

Various performance measurements were taken with our TMO-based airplane-landing simulator.
First, we measured the difference between the actual and desired execution start times of an SpM.
Next, we measured the difference in execution start times of SpMs on different nodes that are supposed
to execute at the same time. Lastly, we measured the shortest simulation time step that could be used
with our application while meeting all real-time deadlines. A shorter simulation time step implies
a more accurate simulation result, since calculations of position, velocity, and other attributes are
performed more frequently.

6.1. SpM timing accuracy

Table V shows the differences between actual and desired execution start times for an SpM in our
airplane-landing simulator. As mentioned above, our airplane-landing simulator has four TMOs, and
each has its own set of one to two SpMs and several SvMs. The results shown in Table V are similar
to those shown in Table III, which showed the analogous results for a minimal TMO-based system.
The maximum value is still around 14 ms, and the average value is around 5.5 ms. These results show
that TMOSM/NT can be used effectively for real-time applications with timing accuracy requirements
of around 14 ms or more.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM

Table VI. Differences in execution start times (in us) for SpMs distributed among multiple
nodes in the airplane-landing simulator.

Number of nodes Minimum Maximum Average Standard deviation
4 2943 11590 6071 1908

Table VII. Minimum simulation time step possible
with the airplane-landing simulator.

Number of nodes 1node 2nodes 4 nodes

Minimum period 30 ms 20 ms 18 ms

6.2. Inter-node timing differences

Table VI summarizes the time measurements of the differences in execution start times for
SpMs assigned to different nodes in the airplane-landing simulator. Because the current simulator
implementation only uses four TMO objects, the maximum number of computing nodes that can be
used is four. This table contains results that are similar to the results shown in Table IV, which measured
the same values in a minimal TMO-based system. Since the target simulation period of our simulator
is a few tens of milliseconds, an average difference of 6 ms is acceptable.

6.3. Simulation performance and number of nodes

An important metric of performance in a real-time simulation system is the smallest time unit that can
be used while continuing to meet all required deadlines. This is especially important for scaled real-
time simulation. However, even for non-scaled real-time simulation, the use of the minimum simulation
time step possible is desirable since it results in accurate and detailed simulation. Table VII shows the
minimum simulation time step possible with our airplane-landing simulator on cluster systems with
one to four nodes. Each result shown is the minimum value possible in 10 000 trials (out of which none
missed their deadlines). The amount of computation performed by each SpM is the primary factor in
determining this minimum simulation time step. For improved performance in a larger cluster system,
SpaceTMO could be split into a number of smaller TMOs, thus distributing the work required in one
SpM of the original SpaceTMO.

Empirical studies [12] have shown that in first person shooter games smooth play can be realized if
the response time is in the range of 50-300 ms. Such response time can be realized by use of SpMs with
iteration periods at the level of a few tens of milliseconds. In most interactive real-time applications
such iteration periods are sufficient as they are in our airplane-landing simulator.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

SP E A TMO-STRUCTURED REAL-TIME AIRPLANE-LANDING SIMULATOR
%

7. CONCLUSION

In recent years, distributed time-triggered simulation has emerged as a viable approach for distributed
real-time simulation. This type of simulation approach can be implemented efficiently by using
the TMO specification and programming scheme, which enables high-level high-precision real-time
distributed computation programming, and provides support tools based on Windows NT, named
TMOSM/NT. Measurements of the real-time performance of TMOSM/NT (whether deadlines were
met and whether methods executed exactly when they were supposed to execute) were taken for
a minimal TMO-based system and a non-trivial TMO-based application. The experimental results
showed that TMOSM/NT was able to support applications subject to timing precision requirements
at the level of about 12 ms. (Other implementations of the TMO support tools, such as Linux
implementations which involve kernel level extension can support even tighter timing accuracies.)

The TMO model was used to implement a demanding non-scaled real-time simulation, an airplane-
landing simulator. Because of the real-time object-oriented middleware support provided by the
TMO scheme, the development of the airplane-landing simulator was completed in about 4 months.
This included the time required to learn the TMO model for the first time; in addition, about half of
the 4-month period was spent on the graphic user interface. Moving the application from a single-
node system to a four-node system was a simple matter of moving the four TMOs into separate nodes.
Communication, synchronization, coordination of tasks hosted on different nodes, etc. were all taken
care of by the TMO middleware. Modification was also simple because of the object-oriented and
encapsulated nature of the TMO model. Finally, the end product displayed more-than-satisfactory real-
time performance for our application, and scaled fairly well from one node to four nodes.

ACKNOWLEDGEMENTS

This research was supported in part by the Korean Ministry of Information & Communication through its
University Fundamental Research Program, grant 2001-051-3. The research conducted at UCI was supported
in part by the NSF under grant numbers 00-86147 and 02-04050 (NSG).

REFERENCES

1. Kim KH, Nguyen C, Park C. Real-time simulation techniques based on the RTO.k object modeling. Proceedings of
COMPSAC 96, Seoul, August 1996; 176-183.

2. Ishikawa Y, Tokuda H, Mercer CW. An object-oriented real-time programming language. [EEE Computer 1992;
25(10):66-73.

3. Ellenberger R, Ling R, Buscher D, Uhde-Lacovara J, Shuler R. Automatic generation of real-time Ada simulation for space
station freedom. Simulation 1993; 65(5):337-345.

4. Fujimoto RM. Parallel discrete event simulation. Communications of the ACM 1990; 33(10):30-53.

5. Zeigler B, Kim J. Extending the DEVS-scheme knowledge-based simulation environment for real-time event-based control.
IEEE Transactions on Robotics and Automation 1993; 9(3):351-356.

6. Kim K, Liu J, Ishida M, Kim I. Distributed object oriented real-time simulation of ground transportation networks with the
TMO structuring scheme. Proceedings of COMPSAC’99, Phoenix, AZ, October 1999; 130-138.

7. Kim K. Object structures for real-time systems and simulators. JEEE Computers 1997; 30(9):62-70.

8. Kim K. Real-time object-oriented distributed software engineering and the TMO scheme. International Journal of Software
Engineering and Knowledge Engineering 1999; 9(2):251-276.

9. Kim KH, Subbaraman C, Kim Y. The DREAM library support for PCD and RTO.k programming in C++. Proceedings of
WORDS ’96, Laguna Beach, February 1996; 59-68.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

M.-G. LEE, S. LEE AND K. H. KIM

10. Kim KH, Ishida M, Liu J. An efficient middleware architecture supporting time-triggered message-triggered objects and
an NT-based implementation. Proceedings of ISORC ’99, May 1999; 54-63.

11. Kim KH, Im C, Athreya P. Realization of a distributed OS component for internal clock synchronization in a LAN
environment. Proceedings of ISORC 2002, Washington, DC, April 2002; 263-270.

12. Henderson T. Latency and user behavior on a multiplayer games server. Proceedings of NGC 2001, UCL, U.K., November
2001; 1-13.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)

	1 INTRODUCTION
	2 OVERVIEW OF THE TMO MODEL
	2.1 TMO model
	2.2 TMO middleware

	3 TIMING PERFORMANCE OF THE CURRENT TMO IMPLEMENTATION
	3.1 Maximum number of schedulable SpMs in a node
	3.2 Timing performance of SpMs within a single node
	3.3 Inter-node timing differences

	4 APPLYING THE TMO MODEL
	4.1 The target application
	4.2 TMO modeling of the target system

	5 IMPLEMENTATION
	5.1 Implementation of an airplane-landing simulator
	5.2 User input/output interface
	5.3 Implementation on a distributed computing environment

	6 PERFORMANCE OF THE TMO APPLICATION
	6.1 SpM timing accuracy
	6.2 Inter-node timing differences
	6.3 Simulation performance and number of nodes

	7 CONCLUSION

