
Data Dissemination for Wireless Sensor Networks

Min-Gu Lee
Network Control Platform Development Team

BcN Business Unit, KT Corporation
bluehope@kt.co.kr

Sunggu Lee
Division of EECE

POSTECH, Pohang, Kyungbuk, S. Korea
slee@postech.ac.kr

Abstract

Due to the special characteristics (limited battery power,
limited computing capability, low bandwidth, need to col-
lect sensor data from multiple fixed-location source nodes
to a sink node that may be mobile, etc.) of wireless sensor
networks, routing algorithms designed for general mobile
ad hoc networks may not be directly applicable to wireless
sensor networks. In one possible routing scheme for wire-
less sensor networks, each node maintains up-to-date hop-
distances and next-hop nodes to the mobile sink node (or
multiple mobile sink nodes). However, this type of method
may require too much control overhead in order to main-
tain up-to-date and consistent hop-distances and next-hop
nodes for all of the sensor nodes in the network. Therefore,
we propose a new low-control-overhead data dissemination
scheme, referred to as pseudo-distance data dissemination,
for efficiently disseminating data packets from all sensor
nodes to mobile sink nodes in a wireless sensor network.

1 Introduction

Wireless sensor networks(WSN) are composed of a mas-
sive number of cheap battery-powered sensor nodes with
wireless communication capability. They sense environ-
mental information such as humidity, temperature, sound,
light and motion, and special nodes referred to as sink nodes
collect the sensed data to produce useful analysis outputs.
The performance of a WSN is limited by battery power, low
computing capacity, short wireless transmission range and
hostile environments. Therefore, routing schemes for WSN
should be carefully designed to ensure long battery life, low
computing requirements, low control overhead and efficient
communications.

One of the major differences between WSN and general
mobile ad hoc networks(MANETs) is in the communication
patterns used. In MANETs, routing is performed for each
source to destination pair such that any node in a MANET

can be a destination as well as a source node. However,
in a WSN, only one, or at most a few, sink nodes can be
destinations that gather sensed data. In addition, the main
communication pattern in a WSN is from multiple sources
to one (or a few) destination, and those multiple sources
repetitively transmit data packets to one (or a few) mobile
sink node. Therefore, there can be a lot of static source
nodes per mobile sink node in a WSN. Since routing algo-
rithms that are commonly used in MANETs try to provide
one or more paths for each source to destination pair in a
peer-to-peer manner, the number of control messages re-
quired rapidly increases as the number of sources per desti-
nation is increased. However, since exchanging messages
consumes battery power (typically, transmitting power is
at least 20 times the power required in an idle state), ex-
changes of control messages should be suppressed in or-
der to save battery power, in addition to scarce bandwidth.
Therefore, a new routing scheme that disseminates sensed
data from potentially all sensor nodes to one (or at most
a few) mobile sink nodes, while taking into consideration
all of the above mentioned considerations, would be highly
beneficial for WSNs.

Another major difference between WSN and MANETs
concerns the mobility of nodes. All nodes in the MANETs
are potentially mobile while most of nodes are not mo-
bile in WSN. It is commonly assumed that deployed sensor
nodes do not have mobility in WSN. However, sinks can
be mobile in many application scenarios of WSN. There-
fore routing scheme of WSN should support mobile sinks.
Note that in many applications such as tactical operations or
environmental sensing applications, it is assumed that sink
nodes have enough battery and computing power because
sink nodes should be powerful devices with large battery
capacity or they can be equipped to vehicles.

2 Related Works

A data centric routing scheme called directed dif-
fusion [1] was proposed to support data dissemination
in WSN. In directed diffusion, a new communication

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

paradigm for WSN was proposed that a sink node floods in-
terests messages and sensor nodes that have matched data
send them to the corresponding sink node. Since inter-
ests and other control messages are generated periodically,
directed diffusion can keep updating paths to sink nodes
even if some links fail. However, mobility of sink nodes
can rapidly degrade performance of directed diffusion since
path can not updated until next interest is flooded through
the whole network. In order to catch topological changes
caused by mobility of sink nodes, frequent flooding of in-
terests is required but it introduces too much overheads of
bandwidth and battery consumption of sensor nodes. Fur-
thermore, since exploratory data is following all possible
paths in the network following gradients, directed diffusion
generates too much unnecessary communications overhead.

Another data dissemination scheme for WSN is two-tier
data dissemination(TTDD) [2]. TTDD disseminates data
using location information via external devices such as GPS
that considers mobility of sink nodes. Although TTDD may
efficiently support mobile sink nodes, it requires location in-
formation which is difficult to achieve in WSN since GPS
is expensive and GPS consumes battery power to detect its
location. In addition, TTDD can not be used in some geo-
graphical regions like forests or inside of caves since GPS
requires direct line-of-sight to the satellites.

3 Pseudo-Distance Data Dissemination
(PDDD)

Since each sensor node in WSN is potentially a source
node to the mobile sink node, all sensor nodes in the net-
work should maintain routes to the mobile sink node. Al-
though mobility of sensor nodes is restricted in WSN, data
dissemination schemes for WSN should be able to follow
topological changes.For instance, a network topology can
be changed if animals kick sensor nodes, enemy troops de-
stroy sensor nodes, or battery of sensor nodes are exhausted,
etc. In addition, in order to save battery and bandwidth, any
kind of periodical messages should be avoided. Therefore,
data dissemination schemes for WSN should be reactive.

3.1 Assumptions and Notation

In this paper, it is assumed that all links are bidirectional
and no control messages are lost. Broadcasting network is
assumed since most off-the-shelf wireless networking de-
vices are omni-directional(Zigbee, IEEE 802.11, Bluetooth,
etc.). It is also assumed that each nodes in the network has
its own unique identifier (like a MAC address). Mobile sink
nodes are assumed that have unlimited battery power, so we
do not take care about the battery efficiency of sink nodes.
Finally, network partitioning is not considered in this paper.

A network is modeled as an undirected graph G =
(V,E), where V is a finite set of nodes and E is a set of
bidirectional communication links at a given time instant.
A sensor node with unique identifier i is denoted as vi and a
neighbor set of node vi, written as Ni, consists of all nodes
that have a bidirectional link to node vi ∈ V .

3.2 Data Dissemination

We adapt the data dissemination scenario from the di-
rected diffusion. When a mobile sink node vsinkID wants
data from sensor nodes, it broadcasts an interests mes-
sage to its neighbor sensor nodes NsinkID with type,
duration, and interval information. Each sensor
node vi that receives an interest message floods the received
interest message to its own neighbor sensor nodes. If vi

has matched data to the type in the interest message, then
it begins to transmit data packets at every specified time
interval for a specified time duration in the inter-
est message. A mobile sink periodically broadcasts inter-
est messages for active tasks.However, sensor nodes do not
send exploratory data and do not wait reinforcement mes-
sages because each sensor node already has valid routes to
the sink node. Note that directed diffusion has to send ex-
ploratory data until it receives reinforcement containing a
selected route by the sink node. Readers should refer to [1]
for more details about data dissemination.

3.3 Partially Ordered Graph using Hop-
Distance

If all nodes in the network know their own hop-distances
to the sink node and hop-distances of their own neighbors,
then optimal routes can be achieved in terms of path lengths
by partially ordered set of V using hop-distances. A sim-
ple assignment of parent-child relationships between adja-
cent nodes as a parent for lower hop-distance node and a
child for a greater hop-distance node builds a partially or-
dered graph(POG). Then, by forwarding packets to a par-
ent node, optimal data dissemination is achieved in terms of
path length until network topology is unchanged.

Figure 1 shows an example of POG using hop-distances
and its hierarchical view. The numbers in the vertices of
Fig. 1 represent unique ID of each node and the numbers
beside vertices are hop-distance of each node toward sink
node v5. Directed solid edges represent parent-child re-
lationships between adjacent nodes, and undirected dotted
edges represent undefined links between adjacent nodes. It
is trivial to see that all sensor nodes have at least one path
to the sink node v5 if vertices are ordered by hop-distances.

Suppose that by movements of sink node v5, link e6,5 is
broken. Then, v6 can not determine its correct hop-distance
until it receives an interest message. Therefore, mobile sink

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

(a) Partially ordered graph (b) Hierarchical view

Figure 1. An example of partially ordered
graph and its hierarchical view.

nodes should re-floods a new interest message whenever
topology of network is changed in order to assign up-to-date
and consistent hop-distances for all sensor nodes. However,
it is not feasible because detection of topological changes at
a sink node is very difficult. Furthermore, frequent flooding
of interest messages introduces too much overheads.

Another problem of POG is wasting of links among
sibling nodes. For instance, a link e1,3 can be used
to disseminate data packets from v1 to v5 using a path
(e1,3, e3,4, e4,6, e6,5) if links on a path (e1,0, e0,2, e2,5) are
highly congested or some of links are failed. However, there
is no order between sibling nodes v1 and v3, v1 can not dis-
seminate data packets to the sink node until it receives in-
terest message from the sink node if some of links on a path
(e1,0, e0,2, e2,5) are broken. Therefore we claim that to-
tally ordered graph(TOG) that siblings also have orders can
achieve better performance than POG. In addition, the pro-
posed algorithm adopts pseudo-distance concept from [3],
because ordered graph using hop-distances is difficult to
catch up topological changes.

3.4 Level Assignments

PDDD(pseudo-distance data dissemination) assigns a
level to each sensor node for a corresponding sink node
with pseudo-distance. The level of a node vi to a sink node
vsinkID is written as Li,sinkID =< λ,−α,−β, vi >. A
pseudo-distance λi,sinkID is a distance metric between a
sensor node vi and a sink node vsinkID. α is the number
of neighbors that have lower λ values than vi and β is the
number of neighbors that have the same λ value. Finally, vi

represents the unique ID of the node. Nodes vi ∈ V are or-
dered by lexicographical comparisons of level of each node
Li,j . For more details, readers should refer [3].

PDDD sets parent-child relationships between adjacent
nodes using pseudo-distance of each node. A node vi

becomes a parent node of vj if there exists a direct link

ei,j ∈ E and λi,sinkID > λj,sinkID. Consequently, vj is
denoted as a child of vi.Nodes with same pseudo-distance
values are grouped into a level group. Then, in order to for-
ward packets toward the sink node, each sensor node simply
selects a parent node with the minimum pseudo-distance
as its next hop. Thus, all neighbors with the smallest λ
value are considered first. Among adjacent nodes with same
pseudo-distance values, a node vk becomes an elder sib-
ling node of vl if there exists a direct link ek,l ∈ E and
λk,sinkID = λl,sinkID and Lk,sinkID < Ll,sinkID. In
order to reduce the number of control messages required,
temporarily incorrect α and β values are permitted since
small deviations in the number of alternative subpaths are
not catastrophic. Each node selects its next-hop as a neigh-
bor with minimum level metric among parent and elder sib-
ling neighbor nodes.

3.5 Totally Ordered Graph using Pseudo-
Distance

In order to overcome shortcomings of POG, PDDD
builds a TOG using pseudo-distance. In PDDD, sink nodes
have the lowest level as < 0, 0, 0, vsinkID > and other sen-
sor nodes have greater levels than the corresponding sink
node. Initially, each sensor node vi sets its level toward
the sink node vsinkID as < ∞,∞,∞, vi >. When a sink
node wants to collect data from sensor nodes for active
tasks, it broadcasts an interest message. By receiving in-
terest messages, each node can set its pseudo-distance and
corresponding level, then it broadcasts the received inter-
est message to its neighbor nodes with its own level metric.
An interest message consists of six-tuple as [sequence,
sinkID, L, type, duration, interval] where
sequence is the sequence number of the interest message
that is generated by the corresponding sink node, sinkID
is the unique ID of the corresponding sink node, L is the
level of the node that is broadcasting the interest message,
type represents data type that the sink node want to col-
lect, duration represents how long the data should be
transmitted from sensor nodes that have matched data and
interval represents the transmitting period of sensed
data.

Figure 2 shows a pseudocode of the procedure executed
when a node vi receives an interest message from its neigh-
bor node. On receiving an interest message, a sensor node
vi updates its neighbors’ level metric table with specified
L in the message (line 2 of Fig. 2). If vi is the sink node
that generates the interest message, then it has nothing to
do. Therefore it simply drops that interest packet and termi-
nates the procedure(lines 3–5 in Fig. 2).

When a sensor node vi receives an interest message di-
rectly from a sink node vsinkID, it initiates a local timer to
the sink node vsinkID with MaxHeartBeatTime to de-

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

1. recvInterest(message p) {
2. updateNeighborsLevel(p);
3. if(p.sinkID = vi) {
4. drop(p);
5. return;
6. } else if (p.sinkID = vj) {
7. createTimer(p.sinkID);
8. setTimer(MaxHeartBeatTime,p.sinkID);
9. }

10. if (p.sequence > sequence[sinkID]) {
11. sequence[sinkID] = p.sequence;
12. λi,sinkID = p.L.λ + δ;
13. updateLevel();
14. forwardInterest(p);
15. if (hasMatchedData(p.type) {
16. sendData(p.duration, p.interval);
17. }
18. } else if (p.sequence = sequence[sinkID]) {
19. if (λi,sinkID− p.L.λ > δ) {
20. λi,sinkID = p.L.λ + δ;
21. updateLevel();
22. forwardInterest(p);
23. }
24. }
25. drop(p);
26. return;
27. }

Figure 2. A pseudocode of the procedure that
is executed when vi receives an interest mes-
sage from its neighbor node.

tect breakage of link ei,sinkID. Since mobile sink nodes
have enough battery power, only they generate periodical
heart-beat messages to their direct neighbors. Therefore, di-
rect neighbors of mobile sink nodes can detect link breakage
to the sink nodes by loss of heartbeat messages. Each direct
neighbor sensor nodes create a timer for the sink node (line
7 of Fig. 2). Note that the ‘createTimer()’ function does not
create multiple timer instances for one sink node, i.e., only
one timer is created for one mobile sink node. Then, it sets
its timer as MaxHeartBeatTime (line 8 of Fig. 2).

Then, vi checks the sequence number of the interest mes-
sage(line 10 of Fig. 2). If the sequence number is newer
than it has received, it should update its pseudo-distance as
λi,sinkID = λj,sinkID + δ and corresponding level infor-
mation including α and β (lines 13–14 of Fig. 2) after it up-
dates its new sequence number(line 11 of Fig. 2) because a
new interest message contains up-to-date level information.

(a) Totally ordered graph (b) Hierarchical view

Figure 3. An example of totally ordered graph
and its hierarchical view.

After updating level metric, it forwards the interest message
with its own level information Li,sinkID (line 14 of Fig. 2).
Then vi begins to send data packets toward the correspond-
ing sink node if it has matched data during p.duration
with a period of p.interval that are specified in the in-
terest message (lines 15–17 of Fig. 2).

If the interest message has the same sequence num-
ber that vi received last, then it compares its pseudo-
distance to that of vj . If the difference meets λi,sinkID −
λj,sinkID > δ, then vi updates its pseudo-distance
λi,sinkID = λj,sinkID + δ and the corresponding level in-
formation since the route following vj is expected shorter
than vi has (lines 19–21 of Fig. 2). Then, vi forwards the
interest message with its own level information (line 22 of
Fig. 2). Note that PDDD simply drops an interest message
which is older than it already received.

Figure 3 shows an example of totally ordered graph with
a mobile sink node v5 using pseudo-distances. Numbers be-
side vertices represents a level metric of each node. As de-
scribed above, a sink node v5 sets its level as < 0, 0, 0, 5 >
and others have non-zero levels corresponding to its own
pseudo-distance value. Note that the pseudo-distance be-
tween two nodes is a multiple of δ, which is the default dif-
ference in λ between adjacent nodes. δ is used for inserting
a new level to already created levels. Details of inserting
a new level using δ will be described in the next section.
Since an interest message is generated by the sink node v5,
all sensor nodes can set their own levels Li,5 as direct pro-
portional to hop-distances to the sink node.

Nodes are also grouped into four different level groups as
same as in Fig. 1(b). However, compared to Fig. 1(a), there
is no undefined links in Fig. 3(a) since all nodes are totally
ordered with level metrics Li,5 that can create hierarchy be-
tween siblings in Fig. 3(b). Therefore, two undirected dot-
ted edges in Fig. 1(a) becomes directed solid edges between
siblings that can increase redundancies of routes.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

3.6 Maintenance of TOG

Sink nodes are mobile and sensor nodes would be failed
to operate due to various reasons such as exhausted battery
power, out of order by hostile environments, etc. Therefore,
PDDD should be able to dynamically and locally maintain
routes without a new interest message from the sink node.
Because there are redundant paths in PDDD, certain level of
link failures can be tolerated in PDDD. However, if a node
vi loses its all parent nodes and elder sibling nodes, then it
has to update its own level locally to find new parent nodes.

Loss of parents are detected in two methods: missing
heart-beat messages at direct neighbor nodes of a sink node
or missing ACKs from next hop nodes at sensor nodes. As
described in Sect. 3.5, a sink node periodically broadcasts
heart-beat messages in order to notify link connectivity to
its neighbors. If a direct neighbor node of sink node failed to
receive consequent heart-beat messages from its sink node
until the timer is expired, it regards the link as broken and
it destroys the timer. For general sensor nodes, they waits
ACK packet from its next hop after it transmits data packets.
If it failed to receive ACK from its next hop, then it regards
the link is broken.

Figure 4 shows the pseudocode of the procedure ex-
ecuted when a node vi loses all of lower level neigh-
bor nodes. When vi loses its all lower level nodes, it
checks whether it has at least one sibling neighbor node
vj , which is a node with same pseudo-distance λj,sinkID

and at least one child neighbor node vk, which is a node
with greater pseudo-distance λk,sinkID (line 2 of Fig. 4).
If vi has both sibling neighbor nodes and child neighbor
nodes, then it defines a new level group as λi,sinkID =
�(λi,sinkID + minvj∈Ni

(λj,sinkID))/2� in order to set
parent-child relationships between vi and sibling neighbor
nodes vj (line 3 of Fig. 4). By assigning a new level group,
it can transparently get new parent neighbor nodes with-
out any affects to its child nodes. Otherwise, it sets its
pseudo-distance as λi,sinkID = minvj∈Ni

(λj,sinkID) + δ
(line 5 of Fig. 4) to convert neighbors that has minimum
pseudo-distance as parents. After updating corresponding
pseudo-distance, vi updates its own level metric Li,sinkID

and broadcasts a new UPD message to notify changes of
pseudo-distance to its neighbors. An UPD consists of
[originator, sequence, Li,sinkID, vsinkID] where
originator represents the node that detects topologi-
cal changes, sequence represents the sequence number
of generated UPD message at originator to distinguish
fresh UPD messages, Li,sinkID represents a level of a node
that transmitting the UPD message, and vsinkID is an ID of
the corresponding sink node.

Figure 5 shows a pseudocode of the procedure executed
when a node vi receives an UPD message from its neigh-
bor node. First, vi updates level information of neighbors

1. lostAllParentsOrElderSiblings() {
2. if(sibling neighbors & child neighbors exist) {
3. λi,sinkID = �λi,sinkID+minvj∈Ni

(λj,sinkID)

2 �,
where λi,sinkID < λj,sinkID;

4. } else {
5. λi,sinkID = minvj∈Ni

(λj,sinkID) + δ;
6. }
7. updateLevel();
8. sendUPD(Li,sinkID);
9. return;

10. }

Figure 4. Pseudocode of procedure executed
when a node vi loses all of its parent neigh-
bor nodes and elder sibling neighbor nodes.

in its local table following received UPD message (line 2
of Fig. 5). Next, if pseudo-distance of vi is ∞, then it
updates its pseudo-distance and corresponding level met-
ric, then broadcasts an UPD message with its own level
information (lines 3–7 in Fig. 5). Note that sequence,
originator information is copied from the received
UPD message. Although pseudo-distance of vi is not ∞,
it may need to updates its pseudo-distance if it can find par-
ent neighbor nodes that are expected to be shorter than it
has. If λi,sinkID−p.L.λ is greater than δ, then it updates
its pseudo-distance as λi,sinkID =p.L.λ + δ and corre-
sponding level metric (lines 8–10 in Fig. 5). After updating
level metric, it broadcasts an UPD message with its own
level information (lines 11–12 in Fig. 5).. Note that, as
a previous case, sequence, originator information
is copied from the received UPD message since the UPD
message is triggered by other UPD messages. Finally, if a
pseudo-distance of received message is greater than it has,
which may cause loss of parent neighbor nodes or elder sib-
ling neighbor nodes, it checks that it still has at least one
valid parent of elder sibling neighbor nodes(lines 13–14 of
Fig. 5). If it has neither a parent neighbor node nor a sibling
neighbor node, then it has to execute the procedure “lostAll-
ParentsOrElderSiblings()” (lines 15–16 of Fig. 5).

Figure 6 shows an example of route maintenance that
a link e8,5 is broken due to movement of a sink node v5.
Dashed arrows represents adjusted links due to topological
changes. Since link e8,5 is broken, v8 can not receives heart-
beat messages from v5. After timer is expired, v8 considers
that it loses its parent neighbor node. Because it has nei-
ther parent neighbor nodes nor elder sibling neighbor node,
it executes the procedure of Fig. 4. v8 has to update its
pseudo-distance as λ8,5 = λ9,sinkID + δ because it does

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

1. recvUPD(message p) {
2. updateNeighbor(p);
3. if (λi,sinkID = ∞) {
4. λi,sinkID = p.L.λ + δ;
5. updateLevel();
6. sendUPD(Li,sinkID, p);
7. return;
8. } else if (λi,sinkID−p.L.λ > δ) {
9. λi,sinkID = p.L.λ + δ;

10. updateLevel();
11. sendUPD(Hi,sinkID, p);
12. return;
13. } else if (λi,sinkID ≤ p.L.λ) {
14. if(isLostAllParentsOrElderSiblings()) {
15. lostAllParentsOrElderSiblings(); {
16. return;
17. }
18. }
19. }

Figure 5. A pseudocode of the procedure that
is executed when vi receives an UPD mes-
sage from its neighbor node.

not have any child neighbor node (line 5 of Fig. 4). After
updating λ, it updates corresponding level metric, then it
broadcasts a new UPD message to its neighbors in order to
notify the change of its level metric. On receiving an UPD
message from v8, v9 updates its neighbors level information
table (line 2 of Fig. 5). Since p.L.λ is greater than λ9,5, it
checks whether it still has parent neighbor nodes or elder
sibling neighbor nodes. As a result, v9 still has one parent
neighbor node.Note that v9 does not broadcast an UPD mes-
sage although it updates its level since its pseudo-distance
is not changed as described earlier. Hierarchical view of
Fig. 6(a) is shown in Fig. 6(b). v8 is now in a level group of
3δ, which was δ group previously.

Figure 7 shows another example of route maintenance
that link e4,6 is broken. Since v4 loses its last parent neigh-
bor node and it does not have any elder sibling neigh-
bor node, it executes the procedure of Fig. 4. As a re-
sult, v4 defines a new level group as λ4,5 = �(λ4,5 +
minvj∈N4(λj,5))/2� = 2δ + 1/2δ (lines 2–3 in Fig. 4).
Note that by assigning a new level to v4, v3 is not affected
that v3 still can disseminate data packets via v4 without any
process. On receiving an UPD message from v4, v3 and v7

update their corresponding α and β values. Although their
level metrics are changed, they do not broadcast UPD mes-
sages since pseudo-distance is still unchanged.

(a) A link e8,5 is broken. (b) Hierarchical view

Figure 6. An example with broken link e8,5.

(a) A link e4,6 is broken. (b) Hierarchical view

Figure 7. An example with broken link e4,6.

4 Evaluation

Simulations were conducted to evaluate the proposed
dissemination algorithm using ns-2, which is a discrete
event simulator tool commonly used in networking re-
search. Performance of TTDD is not directly comparable to
PDDD since TTDD requires external devices that provide
location information such as GPS. Therefore we compared
performance of PDDD to directed diffusion(DD) only.

4.1 Simulation Environment

The distributed coordination function (DCF) of IEEE
802.11 for wireless LANs is used for the MAC and PHY
layers. The data rate is set to 2Mbps and communication
range is set to 250 units. The simulation space is a 2500 ×
2500 unit2 area. Power dissipation of idle time is 35mW,
receive power dissipation is 395mW and transmit power
dissipation is 660mW. Initial energy level of each node is
100 joule to ensure that battery of sensor nodes are not ex-
hausted. The period of interest message is 5 seconds and
each source node transmits 6 times of 64 bytes data pack-
ets at every second. The number of nodes including mobile
sink nodes is 250 which is varies from 150 to 300. Num-

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

ber of mobile sink nodes varies from 1 to 10. Mobile sink
nodes move with maximum speed from 0 to 20 units/s. Sim-
ulation was performed 111 seconds but data are collected
after 11 seconds from the simulation begins in order to ex-
clude initial unstabilities of each data dissemination algo-
rithm. Therefore, effective simulation time is 100 seconds.

We choose three metrics to show performances of data
dissemination algorithms: average dissipated energy per a
successfully received data packets at a sink node per a node,
average latency, and average distinct data packet delivery
ratio. The first metric, the average dissipated energy per
a successfully received data packets at a sink node per a
node, shows the average dissipated energy by a node in de-
livering useful information to the sink nodes. The second
metric, average latency, shows average one-way latency be-
tween transmitted time at source nodes and receiving at a
sink node. The third metric, distinct-event delivery ratio, is
fraction of the number of distinct events received at a sink
node to the number of events originally sent at source nodes.

4.2 Simulation Results versus Number of
Nodes

Figure 8 shows various performances versus number of
nodes. The first graph, Figure 8(a) shows average dissipated
energy. As the network size is increased, energy dissipa-
tion of directed diffusion is rapidly increased while PDDD
remains almost constant. Because directed diffusion deliv-
ers exploratory data following gradients, it requires multi-
ple transmissions of exploratory data. On the other hand, no
exploratory data is required in PDDD and no multiple trans-
mission is required in PDDD. Therefore PDDD is much
more scalable than directed diffusion.

Figure 8(b) shows the average latency.In directed diffu-
sion, average latency is also rapidly increased as the number
of nodes is increased while it is remaining almost as a con-
stant in PDDD.

Figure 8(c) shows the average packet delivery ratio. As
the number of sensor nodes is increased, the packet delivery
ratio of directed diffusion is rapidly decreased while PDDD
delivers almost all packets to the sink nodes.

4.3 Simulation Results versus Mobility of
Sink Nodes

Figure 9 shows various performances versus mobility of
sink nodes to see how sink mobility affects performance of
dissemination algorithms. Figure 9(a) shows average dis-
sipated energy.As the mobility of sink nodes is increased
average dissipated energy is also increased. As depicted,
energy dissipation of PDDD is much less than directed dif-
fusion, and the gap is increased as the mobility of sink node
is increased. Figure 9(b) shows the average latency.As mo-

(a) Average dissipated energy per a received packet per a node

(b) Average latency

(c) Packet delivery ratio

Figure 8. Performances vs. number of nodes.

bility of sink nodes increased, latency should be increased
because packets are waiting in queue at intermediate nodes
during maintenance.Therefore latency should be increased
as mobility of sink node increased. As depicted, PDDD
achieves less latency than directed diffusion.

Figure 9(c) shows the average packet delivery ratio.As
mobility of sink nodes increased, packet delivery ratio is
getting worse. For low mobility of sink nodes, packet de-
livery ratio of directed diffusion is similar to PDDD since
interest message is periodically retransmitted. However,
packet delivery ratio is rapidly decreased in directed diffu-
sion when mobility of sink nodes is very high because pe-
riodical flooding of interest message can not catch up topo-
logical changes while packet delivery ratio of PDDD is only
slightly decreased.

4.4 Simulation Results versus Number of
Source Nodes per a Sink Node

Figure 10 shows various performances versus the num-
ber of source nodes per a sink node. Among them, Fig-
ure 10(a) shows average dissipated energy.As the number
of source nodes increased, dissipated energy is decreased in
PDDD while rapidly increased in directed diffusion. Note
that multiple sources share route information for a sink node
in PDDD. Therefore as the number of source nodes in-
creased, control messages per a node is decreased. There-

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

(a) Average dissipated energy per a received packet per a node

(b) Average latency

(c) Packet delivery ratio

Figure 9. Performances vs. mobility of sink
nodes.

(a) Average dissipated energy per a received packet per a node

(b) Average latency

(c) Packet delivery ratio

Figure 10. Performances vs. number of
source nodes per a sink node.

fore, average dissipated energy per a node is decreased
while it is increased in directed diffusion.

Figure 10(b) shows the average latency of successfully
received data packets at the sink node versus the number
of source nodes per a sink node. As the number of source
nodes increased, latency of directed diffusion is rapidly in-
creased while remaining low in PDDD. However, latency
of PDDD is also rapidly increased if the number of source
nodes per a sink node is 10 because packet collision is fre-
quently occurred on paths from sources to the sink node.
Although latency is rapidly increased in PDDD when the
number of source nodes per a sink node is 10, latency of
PDDD is still much less than latency of directed diffusion.

Figure 10(c) shows the average packet delivery ratio.As
the number of sensor nodes is increased, the packet deliv-
ery ratio of directed diffusion is rapidly decreased while
PDDD delivers almost all packets to the sink nodes. Note
that decrement of packet delivery ratio when the number of
source nodes per a destination is about 10 is mainly caused
by contention of channel access.

5 Conclusion

In this paper, we propose a new data dissemination
algorithm, referred to pseudo-distance data dissemina-
tion(PDDD). PDDD supports mobile sink nodes efficiently
(by using pseudo-distance concepts) while previous meth-
ods such as directed diffusion do not. The simulation results
conducted show that the performance of PDDD is superior
to directed diffusion. For future work, we are investigat-
ing the possibility of modifying PDDD to disseminate data
packets using nodes with higher remaining battery life in
order to extend the nework lifetime of a wireless sensor net-
work.

References

[1] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Hei-
demann and F. Silva, “Directed diffusion for wireless
sensor networking,” IEEE/ACM Transactions on Net-
working, Vol.11, No. 1, pp.2–16, 2003.

[2] F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang, “A two-
tier data dissemination model for large-scale wireless
sensor networks,” in Proceeding of ACM/IEEE MO-
BICOM’02, pp.148–159, Sep. 2002.

[3] M.-G Lee, S. Lee, “A pseudo-distance routing al-
gorithm for mobile ad-hoc networks,” IEICE Trans-
actions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, Vol.E89-A No.6
pp.1647–1656, Jun. 2006.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

